Limiting Reactants Worksheet \#2

1. 3.45 moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ reacts with 4.85 moles of hydrogen gas $\left(\mathrm{H}_{2}\right)$ to form ammonia $\left(\mathrm{NH}_{3}\right)$.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

(a) What is the limiting reactant?
(b) How many moles of ammonia will form?
2. A welder has 20.0 moles of acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and 10.0 moles of oxygen gas $\left(\mathrm{O}_{2}\right)$. They combine to form water and carbon dioxide.

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}
$$

(a) Identify the limiting reactant.
(b) How many moles of carbon dioxide gas $\left(\mathrm{CO}_{2}\right)$ will form?
3. A student places 2.36 moles of acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ and 3.89 moles of sodium hydroxide (NaOH) in a beaker of water. They react to form sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{CO}_{2}\right)$ and water.

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

How many moles of water will form?
4. 0.300 moles of bromine gas $\left(\mathrm{Br}_{2}\right)$ and 0.500 moles of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ react to form tribromochlorine $\left(\mathrm{Br}_{3} \mathrm{Cl}\right)$.

$$
3 \mathrm{Br}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Br}_{3} \mathrm{Cl}
$$

How many moles of this product will form?
5. 100.0 grams of sodium sulfate reacts with 50.00 grams of barium nitrate to form sodium nitrate and barium sulfate.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{BaSO}_{4}
$$

How many grams of barium sulfate will form?
6. $\quad 15.5$ grams of hydrogen gas reacts with 30.0 grams of oxygen gas to form water vapor.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

How many grams of water vapor will form?
7. $\quad 10.0 \mathrm{~g}$ of acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ reacts with 10.0 g of lead(II) hydroxide to form water and lead(II) acetate $\left(\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}\right)$ and water.

$$
2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{Pb}(\mathrm{OH})_{2} \rightarrow \mathrm{~Pb}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(a) Which reactant is in excess?
(b) How many grams of it will remain after the reaction goes to completion? How many grams of lead (II) acetate will form?
8. 25.3 g of magnesium reacts with 44.3 g of copper (II) nitrate to form copper and magnesium nitrate.

$$
\mathrm{Mg}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Cu}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}
$$

(a) What mass of copper will form?
(b) What mass of reactants will remain unreacted?

